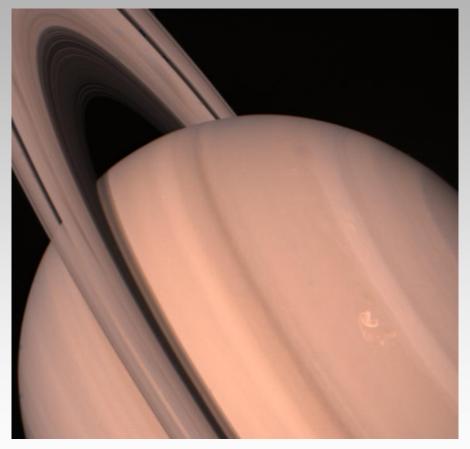


Wasserstoff

26. November 2025

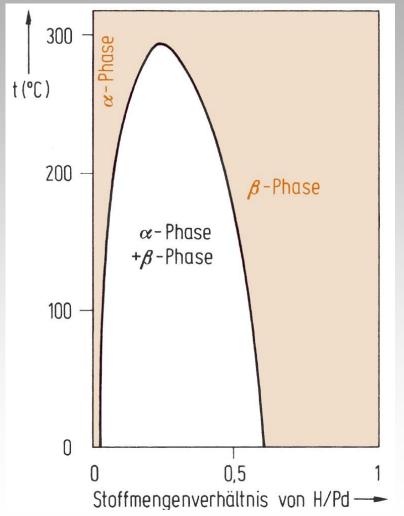

Prof. Dr. Dr. h.c. Thomas M. Klapötke

Anorganische Experimentalchemie

Wasserstoff

Wasserstoff macht 75 % der gesamten Masse und 93 % aller Atome im Sonnensystem aus.

Physikalische Eigenschaften


- Wasserstoff ist das Element mit der geringsten Dichte (0.0899 g⋅dm⁻³ bei 273 K)
- Smp.: 14.0 K (hexagonal dichteste Kugelpackung)
- Sdp.: 20.3 K
- Größte spezifische Wärmekapazität (Cp=dQ/dT)p
- Größte Wärmeleitfähigkeit durch hohe mittlere Geschwindigkeit

• Größtes Diffusionsvermögen:
$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$$

- Übergang in den metallischen Zustand ab ca 2.5 Mbar.
- Geringe Löslichkeit in Wasser (18 mL H₂/L)
- Gute Löslichkeit in einigen Übergangsmetallen (Pd: 850 mL H₂/ mL Pd)
- Wasserstoff ist brennbar, aber unterhält Verbrennungen nicht.

Phasendiagramm Palladium-Wasserstoff

PdH (supraleitend, Tc = 9 K, NaCl-Struktur)

 α -Phase: PdH_{0.01} β -Phase: PdH_{0.61}

Wasserstoffherstellung (I)

Dampfreformierung (Steam-Reforming, SMR)

Allgemeine Gleichung: $C_nH_m + n H_2O \rightarrow (n+m/2) H_2 + n CO$

z.B. Methan $CH_4 + H_2O \rightarrow CO + 3 H_2 (\Delta H^{\circ}_R = +206 \text{ kJ mol}^{-1})$

[Ni]

 $CO + H_2O \rightarrow CO_2 + H_2$ (water-gas shift reaction)

Partielle Oxidation

Allgemeine Gleichung: $C_nH_m + n/2 O_2 \rightarrow n CO + m/2 H_2$

z.B. Heizöl $C_{12}H_{24} + 6 O_2 \xrightarrow{[p]} 12 CO + 12 H_2$

Kohlevergasung

 $C + H_2O \rightarrow CO + H_2$ $(\Delta H^{\circ}_R = +131 \text{ kJ mol}^{-1})$ in Kombination mit: $C + O_2 \rightarrow CO_2$ $(\Delta H^{\circ}_R = -394 \text{ kJ mol}^{-1})$

Steam Reforming

Partielle Oxidation

Kohlevergasung

Wasserstoffherstellung (II)

Elektrolyse von Wasser

Kathode: $2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^-$

Anode: $2 H_2O \rightarrow O_2 + 4 H^+ + 4 e^-$

Gesamt: $2 H_2O \rightarrow 2 H_2 + O_2$

Kværner-Verfahren

Allgemeine Gleichung: C_nH_m + Energie → n C + m/2 H₂

z.B. Methan $CH_4 + Energie \rightarrow C + 2 H_2$

Wasserstoffherstellung (III)

Laborsynthese I (Reaktion von unedlen Metallen mit verdünnten Säuren)

Allgemeine Gleichung: HA + M (unedel) $\rightarrow \frac{1}{2} H_2 + MA$

z.B. $Zn + 2 HCl (aq) \rightarrow H_2 + ZnCl_2$

Laborsynthese II (Reaktion von Metallen mit heißen Laugen)

z.B. $AI + OH^{-} + 3 H_{2}O \rightarrow AI(OH)_{4}^{-} + 1.5 H_{2}$

Stark elektropositive Metalle mit Wasser:

2 Na + 2
$$H_2O$$
 \rightarrow H_2 + 2 NaOH

$$Ca + 2 H_2O \rightarrow H_2 + Ca(OH)_2$$

LMU MAXIMILIANSMAXIMILIANSMUNCHEN FAKULTÄT FÜR CHEMIE UND PHARMAZIE

In Zukunft soll Ammoniak das Rohöl ersetzen, weshalb Ammoniak der ideale Ersatzstoff für Rohöl ist.

Das soll so gehen: In Afrika, den arabischen Ländern, auch in Chile und z.T in Canada gibt es viel grüne Energie (Strom) aus Solar-, Wind- und Wasserkraft-Anlagen. Dieser Strom wird vor Ort zur Elektrolyse von Wasser genutzt $(H_2O \rightarrow H_2 + 1/2 O_2)$ und der Wasserstoff dann auch vor Ort in Ammoniak nach dem Haber-Bosch-Verfahren umgewandelt (N_2 aus der Luft):

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$
.

Dieser Ammoniak kann viel leichter transportiert werden als Wasserstoff, da er schon bei ca. 8 bar und Raumtemperatur flüssig wird.

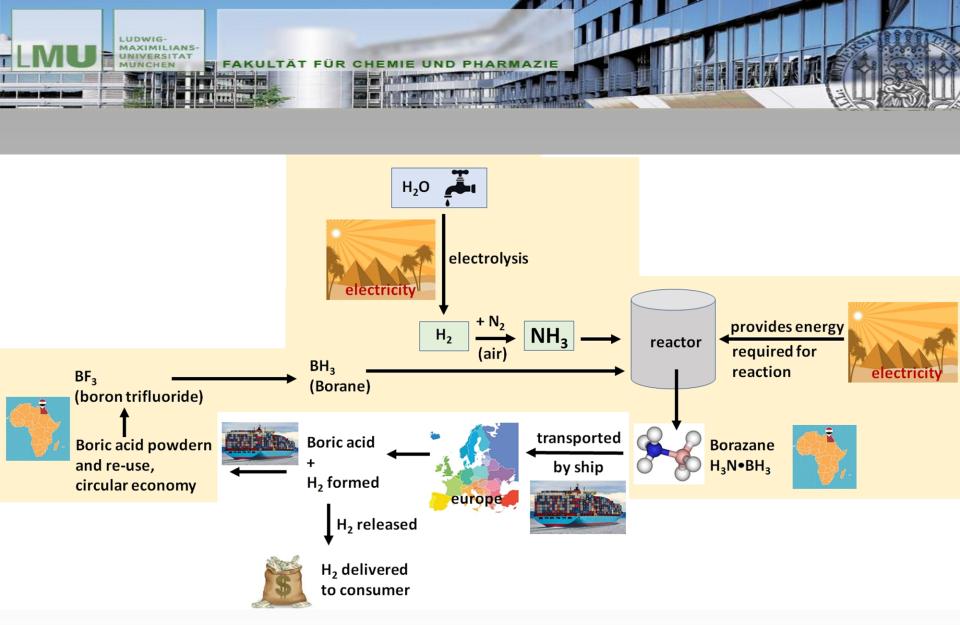
Bei uns in Europa wird dann der Ammoniak wieder in N_2 und H_2 gespalten und der H_2 in Fahrzeugen, zur Strom-Erzeugung etc. eingesetzt.

Schiffe können auch direkt NH₃ als Treibstoff nutzen:

$$2 \text{ NH}_3 + 3/2 \text{ O}_2 \text{ (Luft)} \rightarrow 3 \text{ H}_2\text{O} + \text{N}_2 + \text{Energie}.$$

Falls man Wasserstoff als Borazan (H₃B-NH₃) transportieren möchte hat man zwar den Vorteil, dass das Borazan fest und vollkommen ungefährlich ist, hat aber den Nachteil der Rückumwandlung von BN in Borazan und den Rücktransport:

Europa:
$$H_3B-NH_3(s)$$
 -- Temp. \rightarrow BN (s) + 3 H_2


Arabien, Afrika:
$$BN(s) + 3 H_2 - Kat. \rightarrow H_3B-NH_3$$

Somit könnte man auch die ganze Ammoniak-Produktion (für Dünger = Ammoniumnitrat, Ammoniumphosphat; für Salpetersäure (Ostwald)) grün machen. Heute wird NH_3 auch nach dem H-B-Verfahren aus N_2 (Luft) und H_2 hergestellt, aber der Wasserstoff dazu kommt aus dem SMR-Verfahren (Steam-Reforming-Verfahren), welches auf NG (natural gas = CH_4) basiert:

SMR:
$$CH_4 + H_2O \longrightarrow CO + 3H_2$$
 endotherme Reaktion

Danach wird das CO im WGSR-Verfahren (water-gas shift reaction) dann zu mehr H_2 und CO_2 umgesetzt, es entsteht viel H_2 , aber eben auch CO_2 als Treibhausgas:

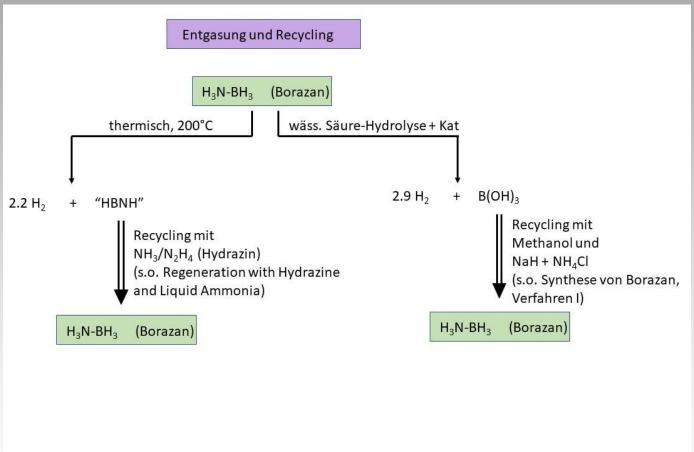
WGSR:
$$CO + H_2O \longrightarrow CO_2 + H_2$$
 exotherme Reaktion

Synthese von Borazan, Verfahren I

B(OCH₃)₃ (Borsäuretrimethylester)

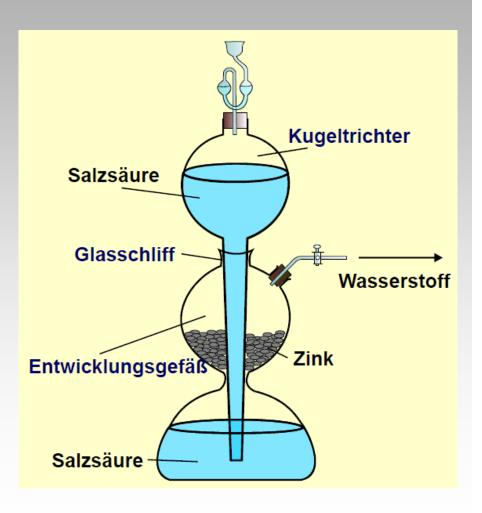
 $NaBH_4$

H₃N-BH₃ (Borazan)

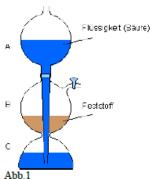


Synthese von Borazan, Verfahren II

$$Na_2B_4O_7$$
 (Borax, Türkei) + 16 Na + 8 H₂ + 7 SiO₂ (Sand)


$$4 \text{ NaBH}_4 + 7 \text{ Na}_2 \text{SiO}_3$$
 (Natriumsilikat)

Kippscher Apparat



Die Kipp'sche Apparatur (auch Kipp'scher Gasentwickler, Kipp'sche Gasentwicklungsapparatur oder Kipp) ist eine Glasapparatur zur Darstellung von Gasen im Labor. Die Apparatur wurde 1850 von dem Apotheker und Chemiker Kipp erfunden.

Durch Einwirken einer Flüssigkeit, meistens einer Säure auf einen Feststoff können u.a. folgende Gase entwickelt werden:

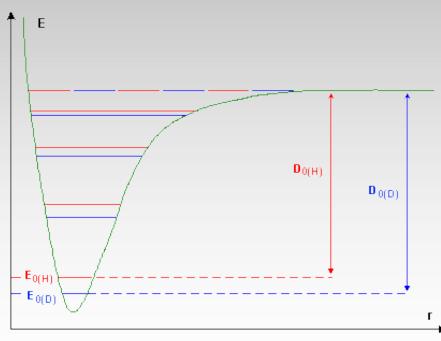
- Wasserstoff, H2, durch Umsetzung von elementarem Zink, Zn, mit Salzsäure, HCl
- Kohlendioxid, CO₂, durch Umsetzung von Marmor (Calciumcarbonat, CaCO₃) mit Salzsäure, HCl
- Chlor, Cl2, durch Umsetzung von Chlorkalk, CaCl(OCl), mit Salzsäure, HCl
- Schwefelwasserstoff, H2S, durch Umsetzung von Eisensulfid, FeS, mit Salzsäure, HCl

Der Vorteil des Kipp'schen Apparates' gegenüber anderen Gasentwicklungsapparaturen besteht in der Möglichkeit, die Gasentwicklung beliebig zu unterbrechen bzw. wieder aufzunehmen.

Kipp'scher Apparat

Der Kipp'sche Apparat besteht aus zwei über einen Schliff verbundene Glaskörper. Die obere Kugel A ist mit dem unteren Gefäß C über ein Steigrohr verbunden. Im mittleren Gefäß B befindet sich der grobstückige Feststoff. Eine Scheibe verhindert das Herabfallen des festen Materials in die Zersetzungsflüssigkeit im unteren Gefäß C.

Durch Zulauf der Flüssigkeit (Öffnen des Gasaustrittshahnes) vom Gefäß A über den Behälter C in die Kugel B setzt die Reaktion und damit die Gasentwicklung ein. Wird der Hahn geschlossen, so drückt zunächst noch entstehendes Gas die Flüssigkeit aus der mittleren Kugel B über den Behälter C zurück in die Vorratskugel A und die Reaktion kommt zum Stillstand. Bei Bedarf kann die Reaktion durch erneutes Öffnen des Gasaustrittshahnes wieder gestartet werden.


Isotopeneffekte

	H ₂	D ₂	H ₂ O	H ₂ D
Sdp. /°C	-252.8	-249.7	100	101.42
Bindungsenthalpie / kJ mol-1	436.0	443.3	463.5	470.9

v / cm⁻¹

4395

3118

$$E = \frac{1}{2} h v_0$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

$$\frac{1}{\mu} = \frac{1}{m_A} + \frac{1}{m_E}$$

Nullpunktsenergie

$$\mu = \frac{m_1 \times m_2}{m_1 + m_2}$$

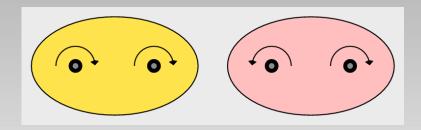
reduzierte Masse

$$\frac{v_D}{v_H} = \sqrt{\frac{m_H}{m_D}}$$

$$\rightarrow \nu_D = \nu$$

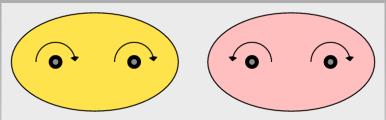
Tabelle 5-1. Atomare und physikalische Eigenschaften von Wasserstoff.

	Protium	Deuterium	Tritium
Massenanteil in der Erdkruste/%*	0.88	10-4	ca. 10 ⁻¹⁷
Atonimasse/g mol ⁻¹	1.007825	2.014102	3.016049
Kernspin I	1/2	1	1/2
r _{kov} /pm	30	30	30
Dissoziationsenergie (D _{X-X})/kJ mol ⁻¹	435.9 ***	443.4	446.9
I/eV	13.6		
A/eV	+0.8		
XAR	2,2		
Fp./°C**	-259.2	-254.4	-252.5
Kp./°C**	-252.8	-249.5	-248.1


^{*} bis 16 km Tiefe, einschließlich Hydrosphäre und Atmosphäre

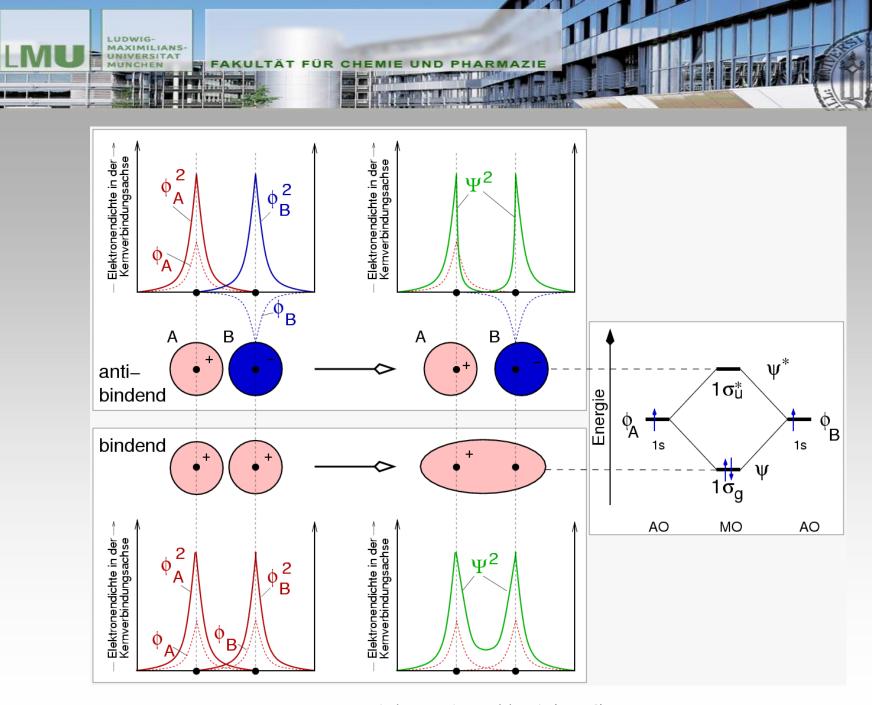
^{**} bezogen auf H2, D2 und T2

^{***} mit $\frac{1}{2}hv_o \approx 25 \text{ kJ mol}^{-1} \text{ folgt: D(H-H)} \approx 461 \text{ kJ mol}^{-1}$


Ortho- und Parawasserstoff

$$H_2 \text{ (ortho)} \rightarrow H_2 \text{ (para)} \quad (\Delta H^{\circ}_R = -0.08 \text{ kJ mol}^{-1})$$

Kernspin	parallel	antiparallel
T = 20 K	0.3 %	99.7 %
T = 198 K	75 %	25 %


 H_2 (ortho) \rightarrow H_2 (para) ($\Delta H^{\circ}_R = -0.08 \text{ kJ mol}^{-1}$)

Kernspin	parallel	antiparallel
T = 20 K	0.3 %	99.7 %
T = 198 K	75 %	25 %

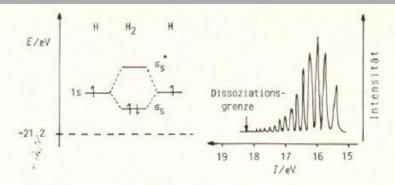


Abbildung 1.41. MO-Schema und Photoelektronenspektrum von H2.

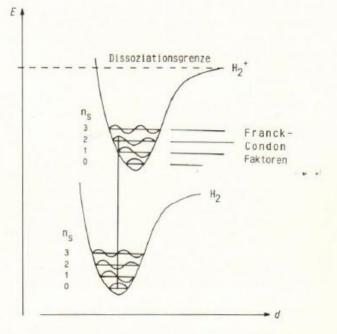


Abbildung 1-42. Potentialkurven für H2 und H2 mit Schwingungswellenfunktionen.

Elektronegativität	2.2 (Pauling-Skala)
1. Ionisierungsenergie	+1312 kJ/mol
Elektronenaffinität	+77 kJ/mol

In Verbindungen mit Metallen wird H die Oxidationszahl -1 zugeordnet, in Verbindungen mit Nichtmetallen die Oxidationszahl +1.

Reaktivität

Reaktionen von molekularem Wasserstoff mit Elementen verlaufen meist langsam.

Ausnahmen:

- ullet Aktivierung durch homolytische Dissotziation von H_2 an Metalloberfläche oder Metallkomplex
- Heterolytische Dissoziation an Metalloberfläche.
- Start einer Radikalkettenreaktion.

Die Hindenburg-Katastrophe

Knallgasreaktion

$$2 H_2 + O_2 \rightarrow 2 H_2O$$
 $\Delta H_R^{\circ} = -484 \text{ kJ mol}^{-1}$

Kettenstart (Zündung): $H_2 + O_2 \rightarrow 2 HO + Wand$

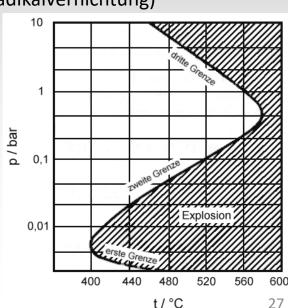
Ketten-Fortpflanzung: $H_2 + HO \rightarrow H \cdot + H_2O$

 $H \cdot + O_2 \rightarrow HO \cdot + O \cdot$ Verzweigung:

 $O \cdot + H_2 \rightarrow HO + H \cdot$ Verzweigung:

Ketten-Abruch: $H \cdot + Wand \rightarrow P$

 $H \cdot + HO \cdot \rightarrow H_2O$ Ketten-Abruch: $0.+H_2 \rightarrow H_2O$


(langsame Radikalbildung)

(Radikalzahl konstant)

(Radikalverdopplung)

(Radikalverdopplung)

(Radikalvernichtung)

Thermische und isotherme Explosionen

Thermische Explosionen:

Beruhen auf die Beschleunigung der Geschwindigkeit einer Radikalkettenreaktion infolge eines **Wärmestaus** ⇒ wenn pro Zeiteinheit mehr Wärme produziert als abgeführt werden kann.

Isotherme Explosionen:

Reaktionsbeschleunigung erfolgt nicht durch Temperaturerhöhung, sondern durch explosionsartigen **Anstieg der Zahl der Radikalketten** aufgrund verzweigter Radikalketten, bei denen mehrere Kettenträger entstehen.

Beispiel für eine thermische Explosion: Chlor-Knallgas-Reaktion

Beispiel für eine isotherme Explosion: Knallgas-Reaktion

Knallgas-Reaktion

$$(H_2 + 1/2 O_2$$
 → H_2O $\Delta H = -241.98 kJ/Mol$

Kettenstart:

$$H_2 \longrightarrow 2 H^{\bullet}$$
 $\Delta H = +436 \text{ kJ/Mol}$

Kettenreaktion:

$$H^{\bullet} + O_{2} \longrightarrow HO^{\bullet} + O \qquad \Delta H = +70 \text{ kJ/Mol}$$

$$O + H_{2} \longrightarrow OH^{\bullet} + H^{\bullet} \qquad \Delta H = +8 \text{ kJ/Mol}$$

$$\times 2 \quad OH^{\bullet} + H_{2} \longrightarrow H_{2}O + H^{\bullet} \qquad \Delta H = -63 \text{ kJ/Mol}$$

$$3 \quad H_{2} + O_{2} \longrightarrow 2 \quad H_{2}O + 2 \quad H^{\bullet} \qquad \Delta H = -48 \text{ kJ/Mol}$$

Pro gebildetes H₂O-Molekül **kaum** Energiegewinn (-24 kJ/Mol) ⇒ aber Bildung eines **zusätzlichen** Kettenträgers, der eine neue Kette startet ⇒ **Kettenverzweigung**.

Daher trotz praktisch **isothermer** Reaktionsfolge ⇒ Geschwindigkeitssteigerung bis zur isothermen Explosion.

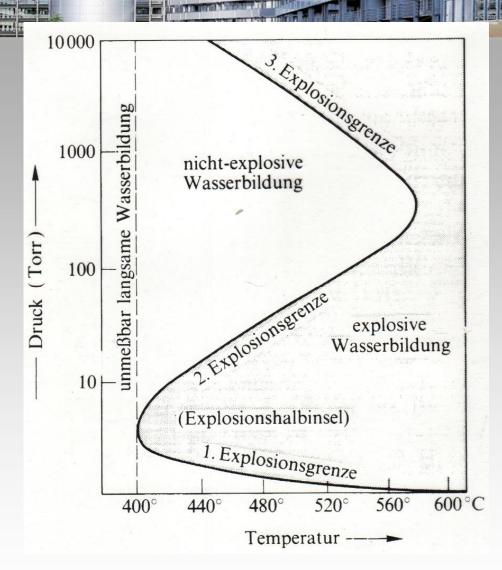
Knallgas-Reaktion

Kettenabbruch:

$$\times 2 \quad H^{\bullet} + O_{2} \longrightarrow HO_{2}^{\bullet} \qquad \Delta H = -197 \text{ kJ/Mol}$$

$$2 \quad HO_{2}^{\bullet} \longrightarrow H_{2}O_{2} + O_{2} \qquad \Delta H = -178 \text{ kJ/Mol}$$

$$2 \quad H^{\bullet} + O_{2} \longrightarrow H_{2}O_{2} \qquad \Delta H = -572 \text{ kJ/Mol}$$


Bildung von H₂O₂ **stark exotherm**; Beitrag zur hohen Temperatur der **Knallgasflamme**; kann nachgewiesen werden durch Quenchen mit Eis, dann Nachweis mit Titanylsulfat.

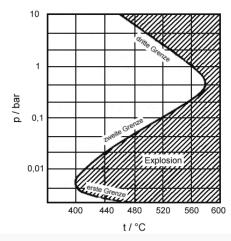
Konzentration von H₂O₂ gering, weil laufende **Zersetzung** bei den hohen Temperaturen:

$$H_2O_2 + H^{\bullet} \longrightarrow H_2O + OH^{\bullet}$$

 $H_2O_2 + H^{\bullet} \longrightarrow H_2 + HO_2^{\bullet}$
 $H_2O_2 + OH^{\bullet} \longrightarrow H_2O + HO_2^{\bullet}$

Bei **hohen Drücken**: Bildung von H_2O_2 aus H_2 und O_2 auch durch **unverzweigte** Radikalkettenreaktion:

$$H^{\bullet} + O_2 \longrightarrow HO_2^{\bullet}$$
 $HO_2^{\bullet} + H_2 \longrightarrow H_2O_2 + H^{\bullet}$
 $\Delta H = -197 \text{ kJ/Mol}$
 $\Delta H = +61 \text{ kJ/Mol}$
 $\Delta H = -136 \text{ kJ/Mol}$


Es gibt Reaktionen, die - absichtlich oder unabsichtlich - explosionartig verlaufen. Dabei sind zwei Arten von Explosionen zu unterscheiden: Thermische Explosionen kommen durch den raschen Anstieg der Reaktionsgeschwindigkeit bei höheren Temperaturen zustande. Wenn bei einer exothermen Reaktion Energie nicht abfließen kann, steigt die Temperatur des Systems und bewirkt eine Zunahme der Reaktionsgeschwindigkeit. Das kann wiederum die Temperaturerhöhung beschleunigen usw. bis zur Explosion. Von einer Kettenverzweigungs-Reaktion sprechen wir, wenn im Verlaufe einer Reaktion die Anzahl der Radikale durch Verzweigungsreaktionen zunimmt, so dass die Reaktionsgeschwindigkeit steigt und die Reaktion sich zur Explosion entwickelt.

Beide Typen findet man bei der Knallgas-Reaktion:

$$2H_2 + O_2 \rightarrow 2 H_2O$$

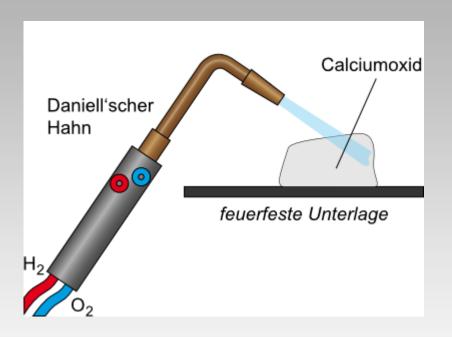
Der Mechanismus dieser Reaktion ist wesentlich komplizierter, als die einfache Reaktionsgleichung vermuten läßt, und nur die wesentlichen Einzelschritte sollen erläutert werden. Es handelt sich um eine Kettenreaktion, bei der die Radikale H, O, OH und HO₂ als Kettenüberträger auftreten. Die wichtigsten Schritte sind:

Die Schritte 3 und 4 sind für die Verzweigunge größer ist als für die Verzweigungen (Bildung zweier Radikale aus einem) verantwortlich, die zur Explosion führen können, wenn die Geschwindigkeit für die Verzweigung größer ist als für die Abbruchreaktionen. Ob eine Explosion erfolgt, hängt von der Temperatur (H + O₂ ist stark tempetaturabhängig) und vom Druck des Systems ab; die Bereiche, in denen die Knallgas-Reaktion explosiv ablaufen kann, sind in der Abbildung schraffiert dargestellt.

Bei sehr kleinen Drücken läuft die Reaktion langsam ohne Explosion ab, weil die bei der Kettenverzweigung entstehenden Kettenträger eher die Gefäßwand als andere Moleküle erreichen und dort (in Abhängigkeit von deren Zusammensetzung) zu inaktiven Molekülen rekombinieren. Erhöht man den Druck etwa längs der 440°C-Linie, so erreicht das System die erste Explosionsgrenze. Dann explodiert die Mischung, weil die aktiven Radikale mit anderen Molekülen reagieren, ehe sie die Gefäßwände erreichen, so dass die Verzweigungsreaktionen effizient werden. Wehn der Druck oberhalb der zweiten Explosionsgrenze liegt, verläuft die Reaktion wieder still, weil die Radikale, die bei den Verzweigungsreaktionen entstehen, wieder miteinander rekombinieren. Jetzt treten Reaktionen wie H + O₂ — HO₂ auf, und die dabei freiwerdende Energie wird bei einem Dreierstoß auf ein anderes unbeteiligtes Molekül M übertragen:

Kettenabbruch: H + O₂ + M → HO₂ + M* (HO₂ reagiert nur langsam)

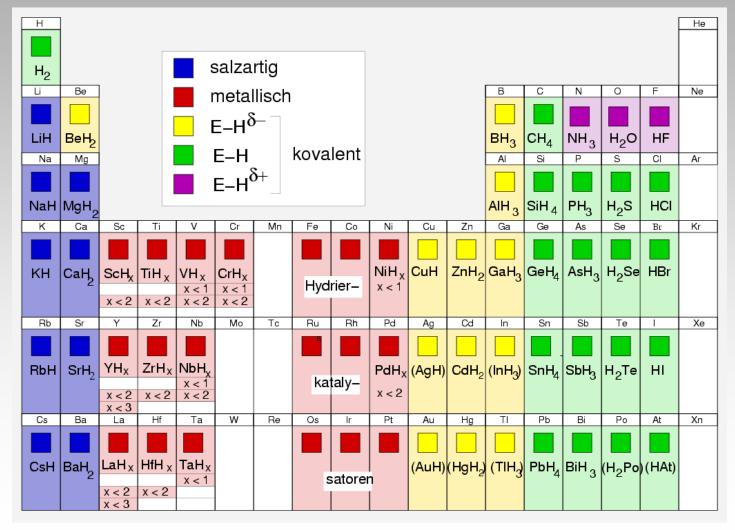
Dreierstöße sind bei kleine Drücken relativ selten; erst bei hohen Drücken gewinnen sie an Bedeutung und inhibieren die Kettenfortpflanzung, weil das entstehende HO₂ nicht direkt an der Verzweigungsreaktion teilnimmt. Wenn man den Druck weiter erhöht, dann wird das HO₂ in OH überführt (dritte Explosionsgrenze):


Ketten-Fortpflanzung: $HO_2 + H_2 \rightarrow H_2O + OH$

d.h. die Abbruchreaktion wird neutralisiert.

Abb. 1: Die Explosionsgrenzen bei der Knallgas-Reaktion

Drummond'sches Kalklicht



Prinzip der Thermolumineszenz

Stoff	Temperatur (°C)
Steinkohle	2200
Braunkohle	1500
Heizöl EL	2100
Methan/Luft	2222
H_2/O_2	3083
H ₂ /Luft	2380
Ethin/Luft	2523
Dicyan/O ₂	4850

Wasserstoffverbindungen der Elemente im Periodensystem

Salzartige Hydride

Verbindung	Kristallstruktur
LiH, NaH, KH, RbH, CsH	Natriumchlorid
MgH ₂	Rutil
CaH ₂ , SrH ₂ , BaH ₂	PbCl ₂ (verzerrt)

Metallartige Hydride

z.B. LaH₅, TiH_{1.9}

- geringere Leitfähigkeiten als die korrespondierende Metalle
- häufig nicht-stöchiometrisch
- H-Legierungen haben oft höhere Wasserstoffdichte als flüssiger H₂

Gruppe	Formel	Name
13	B_2H_6	Diboran
14	CH ₄	Methan
	SiH ₄	Silan
	GeH ₄	German
	SnH ₄	Stannan
15	NH ₃	Ammoniak
	PH ₃	Phosphan
	AsH ₃	Arsan
	SbH ₃	Stiban
16	H_2O	Wasser
	H_2S	Schwefelwasserstoff
	H ₂ Se	Selenwasserstoff
	H ₂ Te	Tellurwasserstoff
17	HF	Fluorwasserstoff
	HCI	Chlorwasserstoff
	HBr	Bromwasserstoff
	HI	Iodwasserstoff

Wasserstoffoxide

$$H_2O$$
 H_2O_2

Dihydrogentrioxid

P. T. Nyffeler, N. A. Boyle, L. Eltepu, C.-H. Wong, A. Eschenmoser, R. A. Lerner, P. Wentworth Jr. *Angew. Chem. Int. Ed.* **2004**, *43*(*35*), S. 4656–4659.

Reduktionsmittel

CuO (s) + H₂ (g)
$$\xrightarrow{\Delta}$$
 Cu (s) + H₂O (g)

$$TiO_2 + CaH_2$$
 (g) $\xrightarrow{\Delta}$ $Ti + CaO + H_2O$

Hydrierung: C_2H_4 (g) + H_2 (g) $\rightarrow C_2H_6$

R'-C OH H H H R''

R'-C O Li* R'-C OR"

R'-C O Li* R'-C O Li* R'-C O Li* R'-C O Li* R'-C OR"

R'-C O Li* R

Lithiumaluminiumhydrid:

Atomarer Wasserstoff

Atomarer Wasserstoff kann durch Zufuhr der Dissoziationsenergie aus dem molekularen Element erzeugt werden.

$$H_2 \rightarrow 2 \text{ H}$$
 $\Delta H^{\circ}_{R} = 435 \text{ kJ mol}^{-1}$

Zum Beispiel durch Erhitzung auf mehrere tausend Grad, elektrische Entladung bei hoher Stromdichte und niedrigem Druck, Bestrahlung mit UV, Beschuss mit Elektronen oder Mikrowellenstrahlung.

T [K]	300	1500	2000	3000	4000	5000	6000
Diss.[%]	10-34	10-3	0.081	7.85	62.2	95.4	99.3

$$H_2 \rightarrow H^+ + H^- \Delta H^{\circ}_R = 1675 \text{ kJ mol}^{-1}$$

Wasserstoff als Energiespeicher

Energiedichten im Vergleich

Auf die Masse bezogen:

Wasserstoff: 33.3 kWh/kgErdgas: 13.9 kWh/kgBenzin: 12.7 kWh/kg

Auf das Volumen bezogen:

Wasserstoff (flüssig): 2360 kWh/m³

• Benzin: 8760 kWh/m³

• Erdgas (20 MPa): 2580 kWh/m³

Wasserstoffgas (20 MPa): 530 kWh/m³

Wasserstoffgas (Normaldruck): 3 kWh/m³

Tab. 2.7: Bipropellants.

oxidizer	fuel	T _c / °C	<i>T </i> K	/ _{sp} / s
LOX	H ₂	2740	3013	389
	H ₂ / Be (49:51)	2557	2831	459
	CH ₄	3260	3533	310
	C ₂ H ₆	3320	3593	307
	B_2H_6	3484	3762	342
	N_2H_4	3132	3405	312
F ₂	H ₂	3689	3962	412
	MMH	4074	4347	348
	N_2H_4	4461	4734	365
OF ₂	H ₂	3311	3584	410
FLOX (30 / 70)	H ₂	2954	3227	395
N ₂ F ₄	CH ₄	3707	3978	319
	N_2H_4	4214	4487	335
CIF ₅	ммн	3577	3850	302
	N_2H_4	3894	4167	313
CIF ₃	ммн	3407	3680	285
	N_2H_4	3650	3923	294
N ₂ O ₄ , NTO	ммн	3122	3395	289
MON-25 (25 % NO)	ммн	3153	3426	290
	N_2H_4	3023	3296	293
IRFNA (III-A)b	UDMH	2874	3147	272
IRFNA (IV HDA) ^b	ммн	2953	3226	280
	UDMH	2983	3256	277
H ₂ O ₂	N ₂ H ₄	2651	2924	287
	MMH	2718	2991	285

 $^{^{\}rm a}$ IRFNA (III-A): 83.4 % HNO $_{\rm 3}$, 14 % NO $_{\rm 2}$, 2 % H $_{\rm 2}$ O, 0.6 % HF

 $^{^{\}rm b}$ IRFNA (IV HDA): 54.3 % HNO3, 44 % NO2, 1% H2O, 0.7 % HF

Anorganische Experimentalchemie (Tag 21)